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Crystal Class and the
Electrooptic Effect*

Abstract

The propagation of light in linear electrooptic media is reviewed with emphasis on
understanding the full effect of crystal symmetry. The changes in the refractive indexes
and the rotation of the optic axes are calculated in detail for each of the 18 biaxial and
uniaxial crystal classes. The direction of the applied field and the ray propagation are
unrestricted. Under these circumstances, there is no apparent reason to prefer crystals
from any particular class. However, in applications requiring large-aperture electrooptic
devices, there is an advantage to applying the field parallel to the ray direction. Then the
most attractive crystal classes are m, mm2, 4, 4mm, 4, 42m, 23, 43m, 6, and 6mm. These
crystal classes allow propagation along an optic axis, generate birefringence with the
applied field paralle] to the optic axis and ray direction, and are incapable of rotating the
index ellipsoid. Materials from these classes will provide robust electrooptic switches at
large aperture.

Introduction

In searching for new electrooptic materials, a set of criteria is required to assess the potential of a
candidate material for the desired application. If the criteria are used to set up screening tests, then the
number of candidates to evaluate can be reduced. One such criterion is the well-known requirement that
there be no inversion center in the crystal structure. Of the 32 crystal classes, only 18 are acentric. Using
Van Neumann'’s Principle, the number of independent components the electrooptic tensor may have is
further reduced. From knowledge of the crystal class alone, considerable information may be inferred.'
There are several further criteria based on the intended application that may be used. At Lawrence
Livermore National Laboratory (LLNL), the need for large lasers for fusion research has led to a recent
breakthrough in large-aperture optical-switch technology.”*® The nonlinear material used in this device
must satisfy several criteria, including (1) a high threshold for high-intensity laser-induced damage, (2) a
moderately large electrooptic coefficient, (3) near collinearity of the applied electric field with the direction
of propagation of the laser beam, and (4) no depolarization of the laser beam during operation of the
switch. The first two criteria are probably not correlated strongly with the crystal class, but the last two are
essentially symmetry requirements on the effective electrooptic tensor, and they might be expected to
carry certain implications for the crystal symmetry of the electrooptic material.

In this paper we consider plane electromagnetic waves propagating in an arbitrary direction and
examine in detail the index changes and the rotation of the propagation eigenmodes arising as a result of
an applied electric field of arbitrary direction. The study extends to all 18 electrooptic classes, including the
biaxial classes 2, m, 222, and mm2. We show that there are indeed advantages to using crystals of certain
classes, depending on the geometry used and the performance requirements.

First, the optical properties of biaxial media are discussed, and the perturbation theory for the ellip-
soid distortion is developed. We then treat the general problem in both uniaxial and biaxial media. Finally,
the case of propagation along an optic axis, and the role of permutation symmetry are analyzed. The
results are summarized in the final section.

* Nonlinear Optical Materials Group, Lawrence Livermore National Laboratory, I'. (3. Box 5508, Livermore, CA 94550.
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Optically Biaxial Media

Maxwell’s equations in a dielectric medium are

curlE = -B M
and
curlH = D . (2)

For a plane wave traveling in the direction of the unit vector s, these lead to

D = ¢n’[-s(s - E) + E] . 3)
In general, the dielectric is anisotropic, with dielectric tensor ¢

D; = €.E, 4)
from which the eigenvalue equation for the polarization vector and the refractive index are obtained. Then
(6, ~ ss5)—D, = =D, . 5)

)] i)
(‘]k n

It follows that s - D = 0 and that D lies in the plane P perpendicular to s. It may therefore be expressed as
a sum over any two vectors that span this space,

D=o0.cosP +e.sinP . (6)

The basis vectors 0 and e are defined in Fig. 1. Namely, if

s = (Sc, S¢c, O, (7)
where

S =sinf C = cos B (8)
and

s =sin¢g,c=cos¢ , 9
then

0=(s5 -c0) (10)
and

e =(-Cc -Cs,9) . (11)

These vectors are the usual ordinary and extraordinary polarization vectors for uniaxial media. In biaxial
media, the eigenmodes are obtained by rotating the (oe) basis set about the ray direction by the angle y.
Using the expression for D, the eigenvalue equation becomes

(’DUU D()e‘ (1 ) _ _1_ (1 .\} (12)
D,., D,/\tany/ \;2/\tany’ ’



Index depends on ray direction and polarization
Angular sensitivity ~ 1 mrad

Figure 1. Definition of the angles # and ¢ and the relation-
ship between the o and e vectors and the crystal coordinates.

where

D, = Cic*/e, + Ci/e, + S'/e, . (13)
D,, = s°/e, + /€, (14)
D, =D, . (15)
and

D., = Ces(l/€, - 1/¢,) . (16)

The eigenvalues are the solutions of

1 1
(Doo - _2) (Dee - _2) - 4D(?;e =0, (17)
n n

and the rotation angle is

1/ - D
t =
an y )

LI (18)

ae

The rotation of the eigenvectors from the uniaxial vectors represented by y may vary from 0 to #/2,
depending on the ray direction and the refractive indexes. In general, the only cases where y vanishes are
restricted to the uniaxial cases where two of the three dielectric constants are equal, or to the case where
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the ray propagates perpendicularly to a dielectric axis. There is no simple closed form for the refractive
indexes in the general case,

In the following, the polarization states of the propagating modes and their associated indexes are
designated by the subscripts a and b. Thus,

a=o0-cosy+e-siny,n=n ; (19)
and
b= -0 siny +e.cosy,n=n, . (20)

Perturbations of the Propagating Modes

The effect of an applied electric field on the eigenmodes is most easily calculated using perturbation
theory. The dielectric tensor is slightly perturbed by the applied field; it can be written as the sum of a
diagonal term and a perturbation, the form of which is arbitrary except that it is symmetric in its two
indexes and linear in the applied field. Then,

A
Loy al (21)
€ €

To simplify the notation, we define

(10 .
M; = (8 - Sibk) (?)kl (5|| - S,Si) (22)
and

In the absence of a perturbation,

Miay) = agay) . (24)
and
M| byy = bolbo) , (25)

where 4, = 1/n3, etc. In the presence of the perturbation,

M + V)a) = aa)y . (26)
and
(M + Vb)Y = blby . 27

The interaction V perturbs both the eigenvectors and the eigenmodes. For example, a = 1/n2,

la) = lag) + |da) (28)
and
a = qay, + da . (29)

|
|
!
|
[
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Using these expressions in the eigenvalue equation, we retain only the lowest-order terms and take the
product with {4y and {b,. Then

da = {(ayVla,) (30)
(aglda) =0 (31)
(bolda) - (by — a9) = —(bdVlag) . 32)
and

db = (b|Vlby) (33)
(boldby =0 , (34)
(adb) = - (bjda) . (35)

The perturbation of the eigenvectors is perpendicular to the unperturbed eigenvector. Under the action of

the perturbation, its length is preserved, and it simply rotates about the ray direction. The rotation angle is
given by

a =lag) + x -fbo) (36)
and

b= —x - la) +1bg) . (37)
where

— (bVig) “M%%>

38
e (38)
oo
In addition, the eigenvalues are perturbed such that
da = Vaa = <H0[Vlﬂ0> ’ (39)
or
&n, = —l(aolAl-Ia y(nd)? (40)
a 2 € 0 a '

This is the general solution to the problem of perturbations of the dielectric tensor in biaxial media, except
for the case where the ray direction is close to an optic axis.

The expression for the rotation angle is inconsistent with the assumption that the perturbation is
small in the degenerate case where n° = n, that is, for propagation along an optic axis. Then the

unperturbed eigenvectors must be chosen to make the perturbation diagonal. Writing

A =acosd +bsind , (41)
and
B = -asind + bcosd , (42)



the angle 4 must be chosen so that

(AVIB) =0 . (43)
Then
2 = 2V (44)
tan = B
Vbb B Vaa

and the new eigenvalues are

(_;, SIEERA A (45)
Hy Ng n

where

SV = sin 24 - %(vaa F Vi) (46)

The unperturbed eigenvalues 1/n? are the same for each wave. In a general biaxial medium, this index is
the intermediate index 1, where 1, < nz << n,. The optic axes lie in the @y plane. The vectors a and b
may be chosen arbitrarily so long as they are perpendicular to the optic axis. It is convenient to choose a as
the B8 axis, and b to lie in the @y plane, perpendicular to the optic axis.

Note that there is no physical reason to suppose that the @y axes coincide with the abc crystallo-

graphic axes. In general, they will not coincide, and care must be taken in applications to correctly identify
the @fy axes.

Propagation in a Birefringent Medium

Consider a plane wave propagating in a birefringent medium. In the absence of an applied field, the
two polarization states propagate independently of one another. In the presence of the applied field, these

states are mixed together, and their velocities are also changed. The effect can be described by a propaga-
tion matrix.

Ev) ! . < : i ‘ /E‘\i
. (n + 1 cos2y ~mosin 21)( ) | (47)
E, \ N sin 2y n' - n cos2y/ \L,

where y is the rotation angle, and

(™ 1 okole)

N | =

no= (48)

The waves experience modulation proportional to y (for small y) and may experience large changes in

their phases, depending on the propagation length, I. In most applications modulation is undesirable, and
phase changes much less than 7 are required.

The perturbations for y and dn are linear in the applied field E, and may be expressed as scalar
products

1 =W-E (49)

and

on = Z - E (50)




The field direction that makes y vanish must then lie in the plane perpendicular to W. Since any compo-
nent of E parallel to W x Z makes no contribution to dn, 41 is maximized by choosing E to lie in the WZ
plane. The optimal field direction is parallel to the companent of Z perpendicular to W such that

Em=Z~Z-Wﬂ5 ) (&1))]
|W]
The maximum so obtained is
2
on,, = |2 [1 -z ;W’Z] N (52)
Wl |Z]

The ability to control y and én separately is therefore contingent on the noncollinearity of the factors Z
and W. In fact, it is inherent in the nature of the electrooptic effect that Z and W are nearly always
orthogonal, regardless of the ray direction. Moreover, it is always true that Z and W can be made to be
orthogonal by an appropriate choice of crystal orientation. We shall return to this subject later.

The Electrooptic Effect in Uniaxial Media

The electrooptic effect is described by a tensor that relates the perturbation in (1/¢) to the applied
field. Then

A(l{)ii -k (53)

The perturbations are

A— = oo, E, . (54)
[
1
and
2.2
n-n
X=- — 7 ok (56)
ne — ng

The electrooptic tensor ry, is symmetric under interchange of the ij indexes. There are 6 independent
combinations of ij, as follows:

11,22,33 ~1,2,3 , (57)
and
23,31,12 - 4,5,6 . (58)

For each of the uniaxial crystal classes, the symmetry relationships between the tensor components force
many of them to vanish, and leave only a few (S6) independent components.” Within each class the
perturbation may be expressed as a sum over the few surviving electrooptic coefficients, each multiplied
by an effective electric field. The relation among the applied field and the effective fields includes all the
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angular behavior of the tensor components. As an example, consider the perturbation in the extraordinary
index of a crystal in the class 3. In this case,

Al? = 1, - C[-(s* = ADE, - 2sck,]

g

+1y - C[(s* ~ AE, - 2scE))

+ry - CEy

+1y - S°E,

+ry - [-2SC(sE, - cE,)]

+715, - [-25C(sE, + cEy)] . 59
There are six independent tensor components, and each one contributes to each of the three perturbations.
The expressions for the perturbation on the other index and the rotation angle are similar sums over the

same tensor components, but involving different effective fields. In general, any perturbation for any
crystal class may be written in the same form.

X=2 R, , (60)
where the sum is over selected tensor components, and each term is a product
Rpk = rpk ' Epk (61)

with no summation.
A systematic study of the perturbations for all the uniaxial crystal classes reveals that

(1) Any perturbation in any crystal class is expressible as a sum of terms 7, E,.
(2) The particular terms (pk), which contribute, depend solely on the crystal class.

(3) The effective fields for the (pk)th term depend solely on the perturbation under consideration;
they are independent of the crystal class.

Table 1 lists those terms that contribute for crystals of a given symmetry class. Table 2 lists the
effective fields that appear in the term R,,; the appropriate field depends on the (pk) and the perturbation.
Using these tables, the appropriate expression for any perturbation can be constructed rapidly. The exam-
ple of the extraordinary index of a 3m crystal is the most complex because this class has the lowest
symmetry and the largest number (6) of independent tensor components.

Expressing the electrooptic effect this way shows that only a few particular combinations of applied
field components appear in the perturbations. These effective fields are either E,, the component along the
polar axis, or combinations of E; and E,, which are the projection of the applied field along vectors lying in
the xy plane and simply related to the ray direction. The projection of the ray direction onto the xy plane
makes an angle ¢ with the x axis and is orthogonal to the ordinary polarization vector o (see Fig. 2).
Together, this pair of vectors forms a basis set, which makes an angle ¢ with the x and y axes. The
effective fields (F,, Fs) are the projections of the applied field onto these two vectors. The effective fields
(F3, F,) are the projections onto a basis set, which makes an angle - ¢ with the x and y axes. The effective
fields (F,, F,) are based on a third set for which the angle is —2¢. In this way each component of the
electrooptic tensor is associated with projections of the applied field onto specific orthogonal directions or
the polar axis.

A further regularity of these effective fields is that, except for the terms R,; and Rg3, the mixing of the
polarization states through the angle y and the changes in the refractive indexes are associated with
components of the applied field along orthogonal directions. This implies that by rotating the applied field
about the polar axis, either the rotation or the index changes can be made to vanish. Referring to the Z and
W vectors defined earlier, this implies that in nearly all cases Z and W are orthogonal, and we have

8
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Table 1.

Electrooptic terms for uniaxial crystals.

Crystal class

Contributing terms®

4,6 Ry Ry Rdl R,

4 Ry Ry Ry, Rgs
422, 622 Ry

4mm, 6mm Ry R, Rs,

“2m R, R,,
3 Ry, Ry, Ry Ras Ry R

32 R, Ry

3m R,, R, R R,

6 Ry Ry,

om2 Ry,

23, 43m R’y

?The terms that contribute to the electrooptic perturbations. Each term,
Ry, has the form r,, - E;, where the effective fields E, are listed in Table 2.
The total perturbation is the sum of all the terms listed here.

Table 2. Effective fields for electrooptic perturbations.
Perturbation

Term ;1 5! S
n? n? nin?

R, F, C*F, - CF,

R, F, - C*F, CF,

Ry, E, C*r, 0

R, (s> A E, Cis? AE, 2Csc - E,

R, 0 Sk, 0

R, 0 - 25CF, SF,

Ry 0 - 2SCr, SF,

Ry, 0 - 2SCF. SF,

R, 0 25CF, SF,

Ry - 2s¢kE, 2C%sck ~C(s* - AE,

R, E, = E, + E,; for each perturbation

Six effective field combinations?

F, = (s -
F, = 2scE, - (s* -
Fy = sE| + cE,
Fy = sE, - cE,
E, = cE| + sk,
F, = cE; ~ sE,

A E, + 2scE,
A E,

* The effective fields are the coefficients of r,, in the expressions for the

various perturbations. Each term R, = r

pk Pk’
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Figure 2. Directions onto which the applied field must be
projected to obtain the various effective fields associated with

rpk'

independent control of the electrooptic rotation and phase modulation. For those cases in which only one
of the pairs (F,, F,), (F, F,), or (F,, F5) dominates, this result is obvious and is valid regardless of the ray di-
rection. For those cases in which R,; or R¢; dominates, it is still possible to control rotation and phase
changes independently, but to do so, the ray direction must be chosen appropriately. Table 2 shows that if
r,; dominates, the ray direction must lie in either the xz or yz plane to give no rotation, or in a plane at 45°
to either of these planes to give no index change. If 7,; dominates, the inverse situation exists. If r3 and r;
are comparable, then the directions that give no rotation lie in a plane, which makes an angle 1/2 arctan
(r13/743) with either the xz or yz plane. The orientation for no index change lies in a plane at 45° to this.

Table 3 lists the various field combinations that occur in the electrooptic effect for different uniaxial
crystal classes. Except for the trigonal classes 3, 32, and 3m, the relevant fields consist of only one of the
three pairs and, except for the classes 422 and 622, the polar (E;) terms. The majority of the classes
therefore allow independent control of the rotation and the index changes, regardless of the relative signs
and magnitudes of the electrooptic coefficients.

For the trigonal classes, the contributions of two or more pairs simultaneously must be included. In
this case, the perturbations are proportional to the projection of the applied field along directions that are
linear combinations of the basis sets in Fig. 2, with coefficients proportional to the relevant electrooptic
tensor elements. Because the basis sets are orthogonal, any linear combination of them is also orthogonal.
Then the independence of the rotation and phase modulation is preserved regardless of the ray direction.

To summarize, by choosing the direction of the applied field appropriately, it is simple to make either
the rotation of the eigenmodes, or the change in the indexes vanish, but not both. Except for the polar
terms ry; and ry;, this is true regardless of the ray direction. If the polar terms are significant, then the ray
direction must lie in a plane making an angle 1/2 arctan (r,5/1,3) with either the xz or the yz planes to make
the rotation vanish, or at 45° to this to make the induced index change vanish.

There does not appear to be any criterion here by which to distinguish one crystal class from another.
So long as the applied field and the ray direction can be chosen freely, all uniaxial crystal classes are
apparently equivalent.

If the applied field is constrained to be parallel to the ray direction, then the situation is somewhat
different. Table 4 lists the angular factors accompanying each tensor component r, for this case. From the

10



Table 3. Effective fields for the uniaxial crystal classes.

Crystal class Contributing field combinations®

4,6 E, F, E,

q Ey F, F,
422, 622 r, E,

dmm, 6mm E, F, Fe
42m E, Fy F,
3 E, E, F, F, F;

32 F F, F, F,

3m E, F, F, F, Fs

6 F, I

6m2 £ |,

23, 3m E, F, F,

* The definitions of the effective fields are given in Table 2.

Table 4. Trigonometric factors for electrooptic perturbations:

E | s
" Perturbation
2 2

Term o 1} 0 12 X r"iv-;—z"i

"y Hy nemy
Rll fl B (° 1 (& fZ
RZZ fz (zfz S fl
Ry, C G, 0
Ry C - st 202 2sc
R, 0 Cs?
Ry 0 2087 2¢s N ]
R, 0 0 - 52
R, 0 2082 0
Rs, 0 2087 (s s S 2sc
Rg; 2Csc 2C% - se G Cr|
Ry Ey = E4 + E, for each column

Two remaining combinations

fi = GBs? e
f, = 3cF - $hs

point of view of generating no rotation, R;;, R;3, and Rs; are optimal, in that for these terms the rotation is
automatically zero. Also R,; cannot occur alone. Thus, 422 and 622 are unsuitable classes, whereas 4mm
and 6mm are attractive. The classes 4 and 6 give no rotation only for rays traveling along the optic axis; in
this arrangement, the induced birefringence is zero, and the material shows no electrooptic behavior. For
all the other classes, it is possible to arrange no rotation for ray directions away from the optic axis. For 3
and 32 the condition for no rotation necessarily implies that tan 8| < |r,,/4r,,, limiting the polar angle and
making the induced birefringence small. The classes 42m, 23, and 43m show no rotation for ¢ = n/4,
without restricting the polar angle. The classes 3m and 6m2 do the same at ¢ = arctan 1/3. The classes 4
and 6 also permit no rotation, but at an azimuthal angle, which depends on the electrooptic coefficients
and the polar angle. Thus the classes fall into three categories:

11



(1) Those for which the rotation is identically zero (4mm and 6mm).

(2) Those for which the rotation can be made zero by an appropriate choice of ray direction (4, 6,
42m, 3, 32, 3m, 6m2, 23, and 43m).

(3) Those not capable of developing birefringence with no rotation (4, 422, 6, and 622).

The Electrooptic Effect in Biaxial Media

In general the eigenmodes of a biaxial medium are related to the o and e vectors through a rotation
about the ray direction s by the angle y [Eq. (18)]. The perturbations of the eigenmodes are given by the
matrix elements V,,, etc. These perturbations are related to the matrix elements in the (oe) frame as
follows:

Via e 205, S\ (Voo
Vae | = | ~ G5 C%’ B Szr Sy N Vee | (62)
Viw s, -2C.5, C/ Ve

where

C, =cosy , S, =siny . (63)

The angle y depends only on the ray direction s and the unperturbed dielectric tensor elements ¢, €, and
¢,.. The induced birefringence and the rotation of the eigenmodes therefore depend nontrivially on the
linear indexes. The lack of any general symmetry restrictions on the rotation angle y makes general
conclusions relating to the relative merit of the biaxial crystal classes somewhat difficult to derive. How-
ever, there are some conclusions that can be drawn without explicitly knowing the angle between the (ab)
and the (oe) frames of reference.

First, the angle 7 is zero for propagation in a dielectric plane, that is, perpendicular to any dielectric
axis. For these directions, C, ¢, or s is zero, and in these special cases we may examine the electrooptic
effect without ambiguity.

Second, it often happens that crystals in the biaxial classes are, in fact, very close to being uniaxial
because two indexes are very nearly equal. Analyzing the (0oe) matrix elements is relevant to this case.

Even in the general case, it is possible to draw some conclusions. The relationship between the (ab)
and to the (oe) frame matrix elements may also be expressed in another, more transparent manner

Ve * Vi = Voo + Voo (64)
Vo = Vip = c0s 2y (V,, - V) +sin2y V., (65)
and

Vo = —sin2y (V,, — Vo) + cos 2y V., . (66)

That is, the sum of the index perturbations is independent of the rotation angle ¥, and the induced
birefringence (their difference) and the eigenmode rotation (the off-diagonal element) transform together
as a simple rotation. With I, Z, and W defined by

Vo + Ve =1 - E (67)
Voo = Ve = Z - E , (68)
and

Vio=W.E , (69)

12
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we find that

Vo +Vy=1"-E , (70)
Voo - Vow =2 -E , (71)
and

V, =W .E , (72)
where

=1, (73)
Z' = Zcos2y + Wsin 2y (74)
and

W' = -Zsin2y + Wcos 2y . (75)
Then

W = %(w2 — Z2%)sin4y + (W - Z)cos 4y . (76)

Therefore, if Z and W are about the same magnitude and approximately orthogonal, Z" and W’ will also
be approximately equal in magnitude and almost orthogonal. In this way it is possible to deduce some of
the electrooptic phenomena of biaxial crystals without an explicit formula for the rotation between the
(ab) and the (oe) frames.

The perturbations V,, etc., are sums over selected terms R,. The relevant terms are listed in Table 5
for the five biaxial electrooptic crystal classes. The angular factors appearing in these terms are listed in
Table 6. The factors for the biaxial classes are different from those of the uniaxial classes, essentially
because the crystal symmetry is different.

Table 5. Electrooptic terms for biaxial crystals. Table 6. Trigonometric factors for biaxial
electrooptic perturbations.

Crystal class

1 2 m mm2 222 Perturbation
Term Voo Vee Ve

Rll R]I o I
R, R, Ryt )
R, R, R, R, 1 N c C%? ~Csc
RZ] RZ] R” ks
Ry Ry R, f
Ry Rys R,, &, s C%? Csc
Ry, Ry Ryn £y
R32 Ru
R33 R33 RJ} R” ¢ ! 2
R, R,, R, Ry | 0 5 0
RtlZ R42 R42 R” !
Ry Rys Ry L,
R;, Rs Ry, Ry L, 0 - 25Cs Sc
Ry, Rs, Rs, Ry - Ey
R53 R53
Ra] Rbl Ra b R
R, R, Ry, - E, 0 25Cs -5
Rey Rgs Res Res 1

? The terms that contribute to the electrooptic perturba- Rg - E,
tions are listed. Each term R, has the form r, - E, - G, Ry, - E, - 2sc 2C? - sc -C6s% - ¢}
where the angular factors Gy are listed in Table 6. The total R,y  E,

perturbation is the sum of all the listed terms.
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Propagation in a General Direction

In general, the vectors I, Z, and W are

I, = (CP+ D" -,

F(CP o+ DSy

+S7 .y

—25C - 5 .1y

=25C - ¢ - 1o

=252 .sc -1y (77)
Z, =5-¢ 71,

+8% &y,

-8y

+25C -5 -1y

+25C - ¢ - 1y

—(C* + 1) - 2sc - 1o, (78)
and
W, = —Csc - ry

+Csc - 1y,

+0 . 7y

~SC - 1y

+Ss - 15

—C(8* - Ay (79)

There is insufficient symmetry in any of the biaxial classes to draw any general conclusions about Z and
W for this case.

Propagation in Dielectric Planes

A dielectric plane is a plane containing two of the dielectric axes of the crystal. As we have already
noted, in this case the (ab) and the (o0e) frames are the same, and y = (.
Consider first propagation in the xz plane, where s = 0. Then

Io=(1+ CYrp + 81y - 25C - ry (80)
Z, =S -y - § 1y +25C 1, (81)
and

W, = =S.-ry +C.ry . (82)

It is interesting that W and Z involve an orthogonal set of tensor components. The scalar product Z - W
involves products of tensor components in the form

A, = -7

pg = Tpk " Tqn (83)

where a sum over the space index k is implied. Table 7 shows the surviving components of A, for each of
the biaxial classes. For all the biaxial classes except triclinic, there is enough symmetry to force Z and W to
be orthogonal. For the classes 2 and 222, the birefringence is controlled by E, (the out-of-plane component
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of the applied field) and the rotation of the eigenmodes by E; and E,. This situation is reversed for classes
m and mm?2.

If the applied field is parallel to the ray direction then
Z.E =8 .(ry —ry + CS . (ry - ry) + 2CS* - rq (84)
for class m, or
Z . E=-8.r, -CS.r,+2CS8 . r, (85)
for class mm2. The rotation of the two eigenmodes for E parallel to the ray direction is
W-E = -5 13 +CS(ry —rg) + C-reg (86)

This is zero for the classes m and mm2, and, in general, finite for 2 and 222.
Consider next propagation in the xy plane, for which S = 1. We find

Io=cborp + 85 ry Ty - 250 F (87)
Zy = ry S ry = Fy 25 - T (88)
and

W, = —c-ry +5- 15 . (89

For monoclinic crystals there is not enough crystal symmetry to force Z - W to be zero, and the birefrin-
gence is controlled by a combination of both in-plane and out-of-plane components. On the other hand,
orthorhombic crystals do possess a high enough symmetry to force Z and W to be orthogonal. However,
their birefringence is controlled by the out-of-plane component E,,.

If the applied field is parallel to the ray direction, then

Z E=5(c-rp+st-rmy -y - 20y (90)
for class 2, or
Z-E =c(c? -1 + 81 -1y — 258 1 (91)

for class . For m and 222 it is zero. The eigenmode rotation is

W . E = - ry +0s(rs; — rg) + 5 - rsy (92)
This is finite, in general, for all the biaxial classes.

The situation for propagation in the yz plane, with ¢ = 0, is analogous to the xy case. Thus,
I, =(1 +CH . ry + 8 1y - 25C -1y (93)
Z, =8 1y - Sy +2SC -y, (94)
and
W, =S-rq - C-ry . (95)

Again, the orthogonality of Z and W is not guaranteed in the monoclinic classes, but it is in the ortho-
rhombic classes. The birefringence for the monoclinic classes is controlled by a combination of both in-
plane and out-of-plane components.
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If E is paralle] to the ray direction, then

Z . E=5(rp - ry) + 25C7 - 1y, (96)

for class 2, or
Z-E =CS - (ryy — ry3) + 2CS* - 1y 97)

for class m and mm2. In the orthorhombic class 222, the birefringence is controlled by the out-of-plane
component E,. The eigenmode rotation is

W.E =5 ry,+ 5Crs; - 1)) — G+ 1y (%8)

and is zero only for mm2 crystals.

Propagation in the yz plane is similar to propagation in the xy plane but dissimilar to the xz plane
case. The asymmetry with respect to the plane stems from the special place given to the y or 2 axis in
monoclinic crystals. The usual convention is that the two-fold axis in the class 2 is parallel to the y axis,
and the mirror plane in the class m is perpendicular to it.

Table 8 shows the combinations of crystal class and dielectric plane for which Z and W are orthogonal
and also those cases where a nonzero birefringence can be generated by an applied field parallel to the ray
direction. Some conclusions can be drawn about these configurations.

(1) Orthorhombic 222 crystals always have Z - W = 0 and always generate birefringence on the
component of the applied field perpendicular to the plane of propagation. This makes 222
unsuitable for large-aperture devices.

(2) Orthorhombic mm2 crystals always have Z - W = 0 and can generate birefringence with E
parallel to s except for propagation perpendicular to the two-fold symmetry axis.

(3) Monoclinic crystals in general do not have Z - W = 0, except for propagation in the xz plane.

(4) Crystals in the class 2 cannot generate birefringence with an in-plane field for propagation in the
xz plane.

(5) Class m crystals can generate birefringence with E parallel to s for propagation in any of the
three planes.

(6) No conclusions can be drawn for triclinic crystals.

Thus, with respect to propagation perpendicular to a dielectric axis, 222 can be ruled out altogether.
Class 2 is acceptable only if Z - W is not required to be zero. Class m is acceptable for propagation in any
plane unless Z - W is required to vanish; then only the xy plane is acceptable. Class mm2 is acceptable
only for propagation in the yz and zx planes. Finally, no conclusions can be drawn about triclinic crystals.

Table 7. Nonzero elements of qu.“

q om 2 mm2 222 Table 8. Summary of electrooptic behavior in
P 123 456 123 456 123 456 dielectric Planes_
1 XXX OXO XXX 000 000 000 o
2 XXX OXO XXX 000 000 000 Class
3 XXX OXO XXX 000 000 000 Plane 1 2 o 222 mm2
4 000 XOX 000 X00 000 X00 . ¥ WP YyI¢ y Yy1

XXX O0XO 000 0XO0 000 O0XO0 . . Y Y y y
6 000 XOX 000 000 000 00X vz Y Y Y y Yy1

PAgy \“rpquk *Y indicates birefringence with E | s.
< "y indicates that Z and W are orthogonal.

The nonzero elements of Apq are denoted by X, the zero ‘1 indicates that the eigenmodes do not rotate for E | s ||
elements by 0. z, where z is the optic axis.
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Propagation ‘lorg an Optic Axis

As we have seen above, the rotation an:. - wely proportional to the unperturbed birefrin-
gence for the given direction of propagation

(99)

The rotation is usually small for material with tvpical biretringences and electrooptic coefficients, except
for propagation along an optic axis, where n, = ;. Then 'he eigenmode rotation may be large, depending
on the matrix element V

A
tan 24 = ———
- Vbb

(100)

The depolarization of the beam will therefore be large unless V,, = 0. Crystal classes for which the
eigenmodes are locked to a particular direction are particularly attractive for this case because they neces-
sarily do not rotate the index ellipsoid.

In the uniaxial crystal classes, the optic axis is the z axis. By using S = 0 in Table 2, V,, vanishes
identically for the terms R,;, Ry3, Ry, Ry, Ry, and Rs;. The term R, alone locks the eigenmodes parallel to
the x and y axes. The term R,; alone locks them at 45° to the x and y axes. Finally, the terms R;; and R,,
place the eigenmodes at directions that depend on the direction of the applied field projected onto the xy
plane and on the coefficients r;; and r,,. In general. the eigenmodes are rotated relative to the x and y axes
by an angle a. This angle is listed in Table 9 for each of the uniaxial crystal classes.

An important practical consideration in large-aperture devices is the precise control of the applied
field direction. A material that locks the eigenmode directions regardless of the direction of the applied
field is therefore an attractive choice. In addition. crystals sometimes show a slow degradation of their
nonlinear properties with time. Crystals for which @ is independent of the electrooptic coefficients would
not suffer this problem in applications.

From Table 9, the crystal classes divide into three categories:

(1) Those for which @ is independent of the applied field. These include 4, 422, 4mm, 42m, 4, 6, 622,
6mm, 23, and 43m. For all of these classes except 4, a is independent of the electrooptic coef-
ficients as well. Crystal degradation with time is therefore potentially relevant only to crystals in
class 4.

(2) Crystals for which @ depends on the field direction, but remains independent of the electrooptic
coefficients. These include the three trigonal classes 32, 3m, and 6m32.

(3) Crystals for which @ depends on both the field direction and the electrooptic coefficients. These
include the two trigonal classes 3 and 6.

If the applied field is also parallel to the z axis, then only the terms Ry;, R,5, and Rg; contribute to the
electrooptic effect. Moreover, R,; contributes equally to both V,, and V,, and therefore generates no
birefringence. Only the terms R;; and R, are significant in determlnmg the eigenmode directions. From
Table 1, the only useful classes for this configuration are 4, 42m, 23, and 43m. From Table 9, these have
eigenmodes at 45° to the x axis, except for 4. Thus, we obtain another category, as follows:

(4) Crystals for which the applied field may be parallel to the z axis. These include 4,42m, 23, and
43m.

In biaxial crystals the optic axis lies in the dielectric plane perpendicular to the dielectric axis with the
intermediate refractive index. The optic axis may lie in any one of the three dielectric planes. It is not
guaranteed that the (abc) frame is identical to the (@fy) frame. Under some circumstances the eigenmodes
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Table 9. Eigenmode rotation for uniaxial

crystals.? j
Crystal class tan 2a i
4, 422, 4mm, 6, 622, omm 0
_ Toa
4 o
T4
42m, 23, 43m 1
3% mofrre b
- By ry o B |
_ E, i
3m, 62m —
E,
!
E, 1
32 —
El

? The eigenmode rotation for uniaxial crystals for rays
propagating along the optic axis, and a general direction for
the applied field.

are locked by the crystal symmetry and experience no rotation as a result of the applied field. They remain
the o and e vectors. From Table 8, we find:

(5) If the (optical) B axis is the (crystallographic) x axis, then only mm2 crystals lock the eigenmodes.

(6) If the B axis is the y axis, then both m and mm2 crystals lock the eigenmodes.

(7) 1f the B axis is the z axis, then no crystal classes lock the eigenmodes.

(8) Crystals in classes 1, 2, and 222 always incur some eigenmode rotation and are therefore not
suitable for this application.

Permutation Symmetry

Consider a general 3-wave interaction in an optically nonlinear material. If the frequencies of the
waves are not close to the absorptions of the material, then the tensor that describes their coupling may be
surmised to be symmetric under interchange of any two indexes. The conjecture, originally made by
Kleinman,? is on most solid ground when all the frequencies involved are close in magnitude and lie
between the major absorption bands. This is the case for optical frequency mixing for example. However,
in the electrooptic effect, one of the frequencies is either ultra-low, or zero. Those excitations of the
medium whose frequencies lie below that of the optical waves can respond to the low frequency field but
not to the optical field. One expects that permutation symmetry would be violated by the contribution of
all those excitations whose frequencies are suboptical. However, to the extent that the suboptical contribu-
tion is small compared to the high-frequency contribution, permutation symmetry might be expected to be
respected, at least approximately, by the electrooptic tensor. It gives the following relationships between
the electrooptic coefficients:

13 = ey » T3 = Fsp o, ta = fp (101)
To3 = Yo o T3 = fs3 0 Ty = Tyy o (102)
and

Ty = Fag = Ty - (103)
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The number of independent coefficients is reduced by up to 8 depending on the number left after the
effects of crystal symmetry have been included.

Permutation symmetry relates electrooptic terms that describe the effect of different components of
the applied field. For example, 4mm crystals have both r,; and r;, coefficients; these couple to E; and E;,
respectively. An equality between them affects almost none of the arguments used to distinguish and
prioritize the crystal classes. No class becomes more or less suitable for any of the applications considered
here as a result of this symmetry, with one exception. As indicated in Table 9, the condition 7,y = ry
causes locking of the rotation angle for rays traveling along the optic axis of 4 crystals. This moves 4 into
the same category as 42m. Otherwise, no conclusion is changed as a result of this symmetry.

Conclusions

The objective of this study was to determine the relative merits of the acentric crystal classes for use
in large-aperture electrooptic devices. The new requirements here are that the applied field must be nearly
collinear with the beam direction and that there must be no depolarization of the beam.

The index ellipsoid experiences both a rotation and a change in birefringence as a result of the
applied field. The tensor character of the effect is insufficient on its own to lead to any general conclusions
about these perturbations. However, as the crystal symmetry increases, some simple geometric relation-
ships become evident. In particular, if the crystal symmetry is high enough, the ellipsoid rotation and the
induced birefringence become “orthogonal” in the sense that they are proportional to orthogonal compo-
nents of the applied field.

We begin with the crystal of lowest symmetry, the triclinic class |, and consider successively higher
crystal symmetries, ending with 43m. For propagation in a general direction, there is insufficient symmetry
in any of the biaxial classes to draw any general conclusinns about the index ellipsoid. It appears that for
the biaxial classes, everything depends on the electrooptic coefficients and the linear refractive indexes, in
general. The properties of the uniaxial classes are summarized in Tables 1 and 2. Consider first the
orthogonality of the perturbations, in the sense described ahove. Recall that orthogonality addresses the
size of the effective electrooptic coefficient. If the applied field is chosern so as to give no ellipsoid rotation,

and yet maximize the induced birefringence, then the effective electrcoptic coefficient is proportional to
the sin of the angle between Z and W. If Z - W = 0. this geometric factor is maximal. Now, all classes
except 4, 42m, 23, and 43m necessarily have Z = W = (. Moreover these classes also have orthogonal
perturbations if the propagation direction is chosen appropriately. Thus. uniaxial crystals can definitely be
configured to be orthogonal; whereas, for biaxial crystals this depends on the electrooptic coefficients and
the linear refractive indexes

[f the direction of the applied field is arbitrary, then it 15 always possible to make the ellipse rotation
zero by an appropriate choice of applied field direction. We require only that W . E = 0. Then orthogonal-
ity guarantees that the induced birefringence is both finite and maximal. If the applied field is constrained
to be collinear with the beam direction, then it is not always possible to have finite induced birefringence
and zero rotation simultaneously. Again, for the biaxial classes, this depends on the electrooptic coef-

ficients and the linear refractive indexes, in general. However, the uniaxial crystals divide into three
categories:

(1) Those for which the rotation is identically zero (4mm and 6nim).
(2) Those for which the rotation can be made to be zero for an appropriate choice of beam direction
(4, 6, 42m, 3, 32, 3m, 6m2, 23, and 43m).

(3) Those that are unsuitable because the induced birefringence is zero if the rotation is zero (4,422,
6. and 622).

Consider next the case of propagation along an optic axis, but with an arbitrary direction of the
applied field. To avoid significant beam depolarization, the eigenmodes must not rotate with the applied
field. For some crystal classes, the eigenmodes are locked in place by virtue of the crystal symmetry. The
eigenmode rotation is described in Tables 8 and 9. For the biaxial classes. locking occurs for class m if the
crystallographic mirror plane contains the optic axis, and also for class mm2, except if the optic axis is
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perpendicular to the two-fold crystallographic axis. For the other biaxial classes 1, 2, and 222, locking does
not occur in general. Among the uniaxial classes, locking occurs for all the tetragonal and cubic classes and
for the hexagonal classes 6, 622, and 6mm. The trigonal classes, 3, 3m, and 32, and the remaining hexago-
nal classes 6 and 62m are unsuitable for this application.

If both the beam direction and the applied field are parallel to the optic axis, then the only uniaxial
crystals that can generate birefringence are 4, 42m, 23, and 43m. All of these exhibit eigenmode locking,
For biaxial crystals the formulas change but the conclusions relating to crystal class are the same as for
general applied fields.

Permutation symmetry was not used to derive any of these conclusions, and it does not alter them in
any way, except perhaps numerically. The large-aperture requirements on electrooptic materials reduces
the number of crystal classes from which the material may be chosen. This information will be useful in
researching new electrooptic materials.
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